Programme Oucomes, Programme Specific Outcomes (PSO) & Course Outcomes (CO) of B.Sc. Mathematics: (Department of Mathematics)

Program Outcome:

- 1. Enabling student to develop a positive attitude towards mathematics as an interesting and valuable subject of study.
- 2. A student should get a relational understanding of mathematical concepts and concerned structures, and should be able to follow the patterns involved, mathematical reasoning.
- 3. Ability to analyze a problem, identify and define the computing requirements, which may be appropriate to its solution.
- 4. Introduction to various courses like Matrices, Group theory, Riemann integration, Graph theory, number theory.
- 5. Enhancing students' overall developments and to equip them with mathematical modeling abilities, problem solving skills, creative talent and power of communication necessary for various kinds of employment.
- 6. Ability to pursue advanced studies and research in pure and applied mathematical science.

Programme Specific Outcome of B.Sc. Mathematics

- 1. Think in critical manner.
- 2. Know when there is a need for information, to be able to identify , locate, evaluate, and effectively use that information for the issue or problem at hand.
- 3. Formulate and develop mathematical arguments in a logical manner.
- 4. Acquire good knowledge and understanding in advanced areas of mathematics and statistics, chosen by the students from the given courses.
- 5. Understand, formulate and use quantitative models arising in social science, Business and other contexts.

Course Outcomes:

DSC1:-	CO1. To learn basic matrix algebra and method to find solutions to system
BMDSC1T:Algebra-	of linear equations.
I and Calculus-I	CO2. To learn Symmetric and skew symmetric matrices, Hermitian,
	Skew-Hermitian matrices.
	CO3. Prove Cayley- Hamilton theorem, Verification of Cayley Hamilton
	Theorem and Determination of A^{-1} , A^2 , A^3 .
	CO4. To learn Standard formula for $.n^{th}$ derivative of the functions

	$(ax + b)^n$, $\log(ax+b)$, e^{ax} , $\sin(ax+b)$, $\cos(ax+b)$, e^{ax} , $\sin(bx+c)$,
	$e^{ax}\cos(bx+c)$, Leibnitz's Theorem and Applications.
	CO5. Learn the basic skills of successive differentiation
	CO6. To Prove Standard theorems including .Rolle's Theorem
	"Lagrange's and Cauchy's Mean Value Theorem, Taylor's and
	Maclaurin's Series and related examples.
DSC2:-BMDSC2T:	CO1. Describe fundamental properties of the real numbers that lead to the
Real analysis-I and	formal development of real analysis.
Calculus-II	CO2.Demonstrate an understanding of limits and how they are used in
	sequences, series, Construct rigorous mathematical proofs of basic results
	in real analysis.
	CO3. To study concept of sequence and series and hence find sum of
	infinite terms with different methods.
	CO4.Demonstrate an understanding of limits and how they are used in
	sequences, series, Construct rigorous mathematical proofs of basic results
	in real analysis
	CO5. Understand the basic ideas of convergence and divergence of
	sequences and series and the methods used for their tests. Basic
	knowledge of summation of series.
	CO6. To Study PolarCo-ordinate, Angle between the radius vector and the
	tangent to the curve, length of the perpendicular from the pole to the
	tangent to the curve, pedal equation of the curves.
DSC3:-BMDSC3T:	CO1 To learn fundamental properties and mathematical tools such as
Algebra-II, Real	closure, identity, inverse and generators.
analysis-II and	CO2. To learn to compare two different algebraic structures and study
Calculus-III	transfer of properties inbetween these structures through homomorphism
	and isomorphism
	CO3. To study algebraic structure 'Groups' in detail which is useful in
	study of Rings, Modules, Algebraic topology, Analysis
	CO4. Develop an understanding of Order of an element of a group, order
	of a group, Cyclic group, coset decomposition of a group leading to the
	proof of Lagrange's theorem on finite groups and it's applications.
	CO5. Understand Integrability and theorems on integrability.
	coconderstand integratinty and theorems on integratinty.

	CO6. To learn Polar Co-ordinate, Angle between the radius vector and
	the tangent to the curve, length of the perpendicular from the pole to the
	tangent to the curve, pedal equation of the curves.
DSC4:-BMDSC4T:	CO1Compute all the solutions of second and higher order linear
Differential	differential equations with constant coefficients, linear equations with
Equation	variable coefficients. Solve simultaneous linear equations with constant
	coefficients and total differential equations.
	CO2. Find a solution of differential equations of the first order and of a
	degree higher than the first by using methods of solvable for p, x and y.
	CO3. Solve simultaneous linear equations with constant coefficients and
	total differential equations.
	CO4. To learnFormulation of Partial Differential Equations, Lagrange's
	equation $Pp + Qq = R$,
	CO5.To understand the concept of Ordinary differential Equations in
	more than two variables.
	CO6.: Introduction of first order Partial Differential Equations, Learn
	methods to solve first order Partial Differential Equations.
DSC5B:-	CO1. To introduce the Basic concept of Graphs, which is an important tool
BMDSE5BT:	for Mathematical Modeling.
Graph Theory-I	CO2.Explaine Sub graphs, Spanning and Induced Sub graphs, the shortest
	path problems, Bipartite graphs, Characterization of Bipartite Graphs in
	terms of its cycles.
	CO3.To lean Matrix Representation of Graph and connectivity, Vertex
	Connectivity and Edge Connectivity, Separability, Whitney's
	Inequality: $\kappa(G\delta) \le \lambda(G) \le \delta(G)$, Manger's Theorem.
	CO4.To learn Cut vertex ,Bridge, Block, Trees, Spanning Trees, Rooted
	and Binary Trees . Properties of Trees and Characterizations, Forests,
	centres and Centroids.
	CO5. To study the concept of trees in detail.
l	1

S.S.K.Basaveshwar Arts, Science, Commerce UG & PG College, Basavakalyan-585327, Dist:Bidar, Karnataka

SEC5B:-BMSEC5B:	CO1. To learn the evaluation of Laplace transform of different types of
Laplace Transforms	functions, their derivatives and integrations.
	CO2. To learn the evaluation of Inverse Laplace transform of functions,
	their derivatives and integrations, and to learn application of Convolution
	theorem.
	CO3. : To learn to apply Laplace Transform to solve Ordinary Differential
	equations with constant coefficients.
DSC6B:-	CO1.Introducing The Känigsberg Bridge Problem, Eulerian Graphs and
BMDSC6BT:	Travelling Salesman Problem, Applications.
Graph Theory-II	CO2. Introduction, Plane and Planar Graphs, Euler's Formula, Outer
	planar Graphs, Kuratowski's Theorem, other Characterization of planar
	Graphs, Crossing Numbers
	CO3.To learnColorability Coloring of a Graph, Chromatic Number of
	some of the familiar graphs, Four Color Conjecture
	CO4. To study Directed Graphs and its applications
SEC6B:-BMSEC6B:	CO1.Understand the concept of fourier Series which gives the idea of
	expanding the sectional continuous functions in to infinite series.
	CO2.Derivation of the Fourier transform and the Fourier inverse
	transform. The Fourier cosine transformation and the Fourier sine
	transformation.